現(xiàn)在市場上關于人工智能醫(yī)療器械產(chǎn)品很多,但是怎么劃分這些人工智能醫(yī)療器械呢?本來來簡單說說。
從醫(yī)療器械軟件角度,人工智能醫(yī)療器械可分為人工智能獨立軟件和人工智能軟件組件,故其類型劃分可參考醫(yī)療器械軟件指導原則相關維度。
人工智能醫(yī)療器械從用途角度可分為輔助決策類和非輔助決策類。其中,輔助決策是指通過提供診療活動建議輔助用戶(如醫(yī)務人員、患者)進行醫(yī)療決策,如通過病灶特征識別、病灶性質判定、用藥指導、治療計劃制定進行輔助分診、輔助檢測、輔助診斷、輔助治療等,相當于用戶的“助手”。反之,僅提供醫(yī)療參考信息而不進行醫(yī)療決策即為非輔助決策,包括流程優(yōu)化、診療驅動,前者如成像流程簡化、診療流程簡化等,后者如成像質量改善、成像速度提高、自動測量、自動分割、三維重建等,相當于用戶的“工具”。此外,輔助決策和非輔助決策從實時性角度均可細分為實時和非實時,前者風險通常高于后者。
人工智能醫(yī)療器械從功能角度大體上可分為處理功能、控制功能、安全功能。其中,處理功能又可分為前處理功能和后處理功能,前處理功能是指采集人體解剖、生理信息生成醫(yī)療器械數(shù)據(jù)過程的處理功能,如成像流程簡化、成像質量改善、成像速度提高等;后處理功能是指利用醫(yī)療器械數(shù)據(jù)生成診療信息或進行醫(yī)療干預過程的處理功能,如診療流程簡化、自動測量、自動分割、三維重建、病灶特征識別、病灶性質判定、用藥指導、治療計劃制定等??刂乒δ苁侵缚刂?驅動醫(yī)療器械硬件運行的功能,如閉環(huán)控制、機械臂運動控制等。安全功能是指保證醫(yī)療器械安全性的功能,如風險預警、急??刂频?。
人工智能醫(yī)療器械從算法角度具有多種類型劃分維度。從學習策略角度可分為有監(jiān)督學習和無監(jiān)督學習,前者需要對訓練數(shù)據(jù)進行標注,如線性回歸、邏輯回歸、決策樹、樸素貝葉斯、K近鄰、支持向量機等經(jīng)典回歸、分類算法,后者無需對訓練數(shù)據(jù)進行標注,如K均值、主成分分析等經(jīng)典聚類、降維算法,前者對于數(shù)據(jù)標注的要求高于后者。從學習方法角度可分為基于模型的算法和基于數(shù)據(jù)的算法,前者采用統(tǒng)計模型、規(guī)則推理等方法,后者主要采用大數(shù)據(jù)方法,前者對于訓練數(shù)據(jù)量的要求低于后者。從可解釋性角度可分為白盒算法和黑盒算法,前者特征提取需要人為干預,可與現(xiàn)有醫(yī)學知識建立關聯(lián),后者自動完成特征提取,難與現(xiàn)有醫(yī)學知識建立關聯(lián),前者可解釋性優(yōu)于后者。
上述類型劃分維度相互交叉,例如:前處理和后處理均可采用不同類型的人工智能算法實現(xiàn)輔助決策、非輔助決策用途,有監(jiān)督學習和無監(jiān)督學習既可采用基于模型的算法、基于數(shù)據(jù)的算法,又可采用黑盒算法、白盒算法。同時,同一維度亦不存在嚴格的劃分界線,例如:在用途方面,通過圖像識別技術進行流程優(yōu)化則需考慮診療驅動相關要求,自動測量結果若為醫(yī)療決策重要指標(如血流儲備分數(shù)FFR)則屬于輔助決策范疇;在功能方面,控制功能、安全功能可與處理功能相結合,前處理過程可包含后處理功能;在算法方面,某些算法既可用于有監(jiān)督學習又可用于無監(jiān)督學習,有監(jiān)督學習和無監(jiān)督學習可結合為半監(jiān)督學習;基于模型的算法亦需數(shù)據(jù)的支持,基于數(shù)據(jù)的算法亦可生成模型;白盒算法和黑盒算法可組合使用成為灰盒算法。
同樣,人工智能醫(yī)療器械從成熟度角度可分為成熟和全新兩種類型,其中成熟是指安全有效性已在醫(yī)療實踐中得到充分證實的情形,全新是指未上市或安全有效性尚未在醫(yī)療實踐中得到充分證實的情形。人工智能醫(yī)療器械的算法、功能、用途若有一項為全新則屬于全新類型,反之屬于成熟類型。
人工智能醫(yī)療器械可同時采用多種、多個人工智能算法,在前處理、后處理過程中實現(xiàn)輔助決策、非輔助決策用途。因此,注冊申請人需結合人工智能醫(yī)療器械的預期用途、使用場景、核心功能以及所用算法的類型特點、技術特征、組合形式開展相應產(chǎn)品質控工作,以保證產(chǎn)品的安全有效性。
編輯:Cikey TAG:/人工智能醫(yī)療器械怎么分類/人工智能醫(yī)療器械類型